Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: covidwho-20239174

RESUMO

Angiotensin Converting Enzyme 2 (ACE-2), Transmembrane Serine Protease 2 (TMPRSS-2) and Neuropilin-1 cellular receptors support the entry of SARS-CoV-2 into susceptible human target cells and are characterized at the molecular level. Some evidence on the expression of entry receptors at mRNA and protein levels in brain cells is available, but co-expression of these receptors and confirmatory evidence on brain cells is lacking. SARS-CoV-2 infects some brain cell types, but infection susceptibility, multiple entry receptor density, and infection kinetics are rarely reported in specific brain cell types. Highly sensitive Taqman ddPCR, flow-cytometry and immunocytochemistry assays were used to quantitate the expression of ACE-2, TMPRSS-2 and Neuropilin-1 at mRNA and protein levels on human brain-extracted pericytes and astrocytes, which are an integral part of the Blood-Brain-Barrier (BBB). Astrocytes showed moderate ACE-2 (15.9 ± 1.3%, Mean ± SD, n = 2) and TMPRSS-2 (17.6%) positive cells, and in contrast show high Neuropilin-1 (56.4 ± 39.8%, n = 4) protein expression. Whereas pericytes showed variable ACE-2 (23.1 ± 20.7%, n = 2), Neuropilin-1 (30.3 ± 7.5%, n = 4) protein expression and higher TMPRSS-2 mRNA (667.2 ± 232.3, n = 3) expression. Co-expression of multiple entry receptors on astrocytes and pericytes allows entry of SARS-CoV-2 and progression of infection. Astrocytes showed roughly four-fold more virus in culture supernatants than pericytes. SARS-CoV-2 cellular entry receptor expression and "in vitro" viral kinetics in astrocytes and pericytes may improve our understanding of viral infection "in vivo". In addition, this study may facilitate the development of novel strategies to counter the effects of SARS-CoV-2 and inhibit viral infection in brain tissues to prevent the spread and interference in neuronal functions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Neuropilina-1/genética , Enzima de Conversão de Angiotensina 2/genética , Astrócitos , Pericitos , Cinética , Barreira Hematoencefálica , Serina Endopeptidases/genética
2.
STAR Protoc ; 3(4): 101853, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: covidwho-2086851

RESUMO

The SARS-CoV-2 envelope (E) protein hijacks human BRD4 (bromodomain and extra-terminal domain protein 4). Here, we describe a protocol to characterize the interaction of the acetylated E protein with BRD4 in vivo. We detail steps to use NMR spectroscopy to map the binding interface and include steps to monitor the effect of BRD4 inhibitors in SARS-CoV-2-infected human lung bronchial epithelial cells. This approach could be applied to study interactions involving other viral and human proteins. For complete details on the use and execution of this protocol, please refer to Vann et al. (2022).1.


Assuntos
COVID-19 , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , SARS-CoV-2/metabolismo , Proteínas de Ciclo Celular , Fatores de Transcrição/metabolismo , Proteínas Virais
3.
Nanomedicine ; 46: 102604, 2022 11.
Artigo em Inglês | MEDLINE | ID: covidwho-2031589

RESUMO

The current vaccine development strategies for the COVID-19 pandemic utilize whole inactive or attenuated viruses, virus-like particles, recombinant proteins, and antigen-coding DNA and mRNA with various delivery strategies. While highly effective, these vaccine development strategies are time-consuming and often do not provide reliable protection for immunocompromised individuals, young children, and pregnant women. Here, we propose a novel modular vaccine platform to address these shortcomings using chemically synthesized peptides identified based on the validated bioinformatic data about the target. The vaccine is based on the rational design of an immunogen containing two defined B-cell epitopes from the spike glycoprotein of SARS-CoV-2 and the universal T-helper epitope PADRE. The epitopes were conjugated to short DNA probes and combined with a complementary scaffold strand, resulting in sequence-specific self-assembly. The immunogens were then formulated by conjugation to gold nanoparticles by three methods or by co-crystallization with epsilon inulin. BALB/C mice were immunized with each formulation, and the IgG immune responses and virus neutralizing titers were compared. The results demonstrate that this assembly is immunogenic and generates neutralizing antibodies against wildtype SARS-CoV-2 and the Delta variant.


Assuntos
COVID-19 , Nanopartículas Metálicas , Complicações Infecciosas na Gravidez , Vacinas Virais , Gravidez , Camundongos , Animais , Feminino , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus/química , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Ouro , Camundongos Endogâmicos BALB C , Anticorpos Neutralizantes , Epitopos de Linfócito B/química , Anticorpos Antivirais
4.
iScience ; 25(8): 104685, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1914522

RESUMO

Noncoding RNAs are important regulators of mucoinflammatory response, but little is known about the contribution of airway long noncoding RNAs (lncRNAs) in COVID-19. RNA-seq analysis showed a more than 4-fold increased expression of IL-6, ICAM-1, CXCL-8, and SCGB1A1 inflammatory factors; MUC5AC and MUC5B mucins; and SPDEF, FOXA3, and FOXJ1 transcription factors in COVID-19 patient nasal samples compared with uninfected controls. A lncRNA on antisense strand to ICAM-1 or LASI was induced 2-fold in COVID-19 patients, and its expression was directly correlated with viral loads. A SARS-CoV-2-infected 3D-airway model largely recapitulated these clinical findings. RNA microscopy and molecular modeling indicated a possible interaction between viral RNA and LASI lncRNA. Notably, blocking LASI lncRNA reduced the SARS-CoV-2 replication and suppressed MUC5AC mucin levels and associated inflammation, and select LASI-dependent miRNAs (e.g., let-7b-5p and miR-200a-5p) were implicated. Thus, LASI lncRNA represents an essential facilitator of SARS-CoV-2 infection and associated airway mucoinflammatory response.

5.
J Autoimmun ; 131: 102855, 2022 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1907255

RESUMO

Following two reports of monkeypox virus infection in individuals who returned from Nigeria to the USA, one who returned to Texas (July 2021) and the other to the Washington, DC area (November 2021), the number of monkeypox infection have dramatically increased. This sounded an alarm of potential for spreading of the virus throughout the USA. During 2022, there was a report of monkeypox virus infection (May 6, 2022) in a British national following a visit to Nigeria who developed readily recognizable signs and symptoms of monkeypox virus infection. Soon following this report, case numbers climbed. By June 10, 2022, more than 1,500 cases were reported in 43 countries, including Europe and North America. While the prevalence of the monkeypox virus is well known in central and western Africa, its presence in the developed world has raised disturbing signs for worldwide spread. While infection was reported during the past half-century, starting in the Democratic Republic of Congo in 1970, in the United States, only sporadic monkeypox cases have been reported. All cases have been linked to international travel or through African animal imports. The monkeypox virus is transmitted through contact with infected skin, body fluids, or respiratory droplets. The virus spreads from oral and nasopharyngeal fluid exchanges or by intradermal injection; then rapidly replicates at the inoculation site with spreads to adjacent lymph nodes. Monkeypox disease begins with constitutional symptoms that include fever, chills, headache, muscle aches, backache, and fatigue. Phylogenetically the virus has two clades. One clade emerged from West Africa and the other in the Congo Basin of Central Africa. During the most recent outbreak, the identity of the reservoir host or the primary carriage remains unknown. African rodents are the suspected intermediate hosts. At the same time, the Centers for Disease Control (CDC) affirmed that there are no specific treatments for the 2022 monkeypox virus infection; existing antivirals shown to be effective against smallpox may slow monkeypox spread. A smallpox vaccine JYNNEOS (Imvamune or Imvanex) may also be used to prevent infection. The World Health Organization (WHO), has warned that the world could be facing a formidable infectious disease challenge in light of the current status of worldwide affairs. These affairs include the SARS-COVID-19 pandemic and the Ukraine-Russia war. In addition, the recent rise in case of numbers worldwide could continue to pose an international threat. With this in mind, strategies to mitigate the spread of monkeypox virus are warranted.


Assuntos
COVID-19 , Mpox , Animais , Surtos de Doenças , Humanos , Mpox/epidemiologia , Monkeypox virus , Pandemias
6.
Structure ; 30(9): 1224-1232.e5, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1895449

RESUMO

Emerging new variants of SARS-CoV-2 and inevitable acquired drug resistance call for the continued search of new pharmacological targets to fight the potentially fatal infection. Here, we describe the mechanisms by which the E protein of SARS-CoV-2 hijacks the human transcriptional regulator BRD4. We found that SARS-CoV-2 E is acetylated in vivo and co-immunoprecipitates with BRD4 in human cells. Bromodomains (BDs) of BRD4 bind to the C-terminus of the E protein, acetylated by human acetyltransferase p300, whereas the ET domain of BRD4 recognizes the unmodified motif of the E protein. Inhibitors of BRD4 BDs, JQ1 or OTX015, decrease SARS-CoV-2 infectivity in lung bronchial epithelial cells, indicating that the acetyllysine binding function of BDs is necessary for the virus fitness and that BRD4 represents a potential anti-COVID-19 target. Our findings provide insight into molecular mechanisms that contribute to SARS-CoV-2 pathogenesis and shed light on a new strategy to block SARS-CoV-2 infection.


Assuntos
COVID-19 , Proteínas de Ciclo Celular/metabolismo , Proteínas do Envelope de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Fatores de Transcrição/metabolismo , COVID-19/virologia , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios Proteicos
7.
Clin Transl Discov ; 2(2)2022 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1872146

RESUMO

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has resulted in more than 500 million cases and 6 million deaths. Several antiviral therapies and vaccines have been developed to mitigate the spread of this infection. However, new approaches are required to battle emerging SARS-CoV-2 variants containing mutations that can reduce the vaccines' efficacy. The use of a combination of viral drugs with inhibitors of the mTOR signaling pathways has emerged as one of the promising novel approaches. We recently showed that SF2523, a dual activity small molecule that inhibits PI3K and BRD4, acts synergistically with the antiviral drugs remdesivir and MU-UNMC-2. Our findings suggest that the mTOR pathways are necessary for SARS-CoV-2 pathogenesis in human cells and targeting PI3K/BET (bromodomain and extra-terminal domain proteins) alone or combined with antiviral therapies is beneficial in mitigating SARS-CoV-2 and its variants of concern (VOCs).

9.
Front Immunol ; 12: 741502, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1477825

RESUMO

Host innate immune response follows severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and it is the driver of the acute respiratory distress syndrome (ARDS) amongst other inflammatory end-organ morbidities. Such life-threatening coronavirus disease 2019 (COVID-19) is heralded by virus-induced activation of mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells). MPs play substantial roles in aberrant immune secretory activities affecting profound systemic inflammation and end-organ malfunctions. All follow the presence of persistent viral components and virions without evidence of viral replication. To elucidate SARS-CoV-2-MP interactions we investigated transcriptomic and proteomic profiles of human monocyte-derived macrophages. While expression of the SARS-CoV-2 receptor, the angiotensin-converting enzyme 2, paralleled monocyte-macrophage differentiation, it failed to affect productive viral infection. In contrast, simple macrophage viral exposure led to robust pro-inflammatory cytokine and chemokine expression but attenuated type I interferon (IFN) activity. Both paralleled dysregulation of innate immune signaling pathways, specifically those linked to IFN. We conclude that the SARS-CoV-2-infected host mounts a robust innate immune response characterized by a pro-inflammatory storm heralding end-organ tissue damage.


Assuntos
COVID-19/virologia , Imunidade Inata , Macrófagos/virologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Proteoma , Proteômica , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Transdução de Sinais , Transcriptoma
10.
J Virol ; 95(24): e0143721, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1434897

RESUMO

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 19 (COVID-19) pandemic. Despite unprecedented research and developmental efforts, SARS-CoV-2-specific antivirals are still unavailable for the treatment of COVID-19. In most instances, SARS-CoV-2 infection initiates with the binding of Spike glycoprotein to the host cell ACE2 receptor. Utilizing the crystal structure of the ACE2/Spike receptor-binding domain (S-RBD) complex (PDB file 6M0J) in a computer-aided drug design approach, we identified and validated five potential inhibitors of S-RBD and ACE-2 interaction. Two of the five compounds, MU-UNMC-1 and MU-UNMC-2, blocked the entry of pseudovirus particles expressing SARS-CoV-2 Spike glycoprotein. In live SARS-CoV-2 infection assays, both compounds showed antiviral activity with IC50 values in the micromolar range (MU-UNMC-1: IC50 = 0.67 µM and MU-UNMC-2: IC50 = 1.72 µM) in human bronchial epithelial cells. Furthermore, MU-UNMC-1 and MU-UNMC-2 effectively blocked the replication of rapidly transmitting variants of concern: South African variant B.1.351 (IC50 = 9.27 and 3.00 µM) and Scotland variant B.1.222 (IC50 = 2.64 and 1.39 µM), respectively. Following these assays, we conducted "induced-fit (flexible) docking" to understand the binding mode of MU-UNMC-1/MU-UNMC-2 at the S-RBD/ACE2 interface. Our data showed that mutation N501Y (present in B.1.351 variant) alters the binding mode of MU-UNMC-2 such that it is partially exposed to the solvent and has reduced polar contacts. Finally, MU-UNMC-2 displayed high synergy with remdesivir, the only approved drug for treating hospitalized COVID-19 patients. IMPORTANCE The ongoing coronavirus infectious disease 2019 (COVID-19) pandemic is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 207 million people have been infected globally, and 4.3 million have died due to this viral outbreak. While a few vaccines have been deployed, a SARS-CoV-2-specific antiviral for the treatment of COVID-19 is yet to be approved. As the interaction of SARS-CoV-2 Spike protein with ACE2 is critical for cellular entry, using a combination of a computer-aided drug design (CADD) approach and cell-based in vitro assays, we report the identification of five potential SARS-CoV-2 entry inhibitors. Out of the five, two compounds (MU-UNMC-1 and MU-UNMC-2) have antiviral activity against ancestral SARS-CoV-2 and emerging variants from South Africa and Scotland. Furthermore, MU-UNMC-2 acts synergistically with remdesivir (RDV), suggesting that RDV and MU-UNMC-2 can be developed as a combination therapy to treat COVID-19 patients.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/farmacologia , Química Farmacêutica/métodos , Chlorocebus aethiops , Simulação por Computador , Desenho de Fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Glicoproteína da Espícula de Coronavírus , Células Vero
11.
Brain Res Bull ; 176: 161-173, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1413366

RESUMO

The COVID-19 pandemic has persisted for more than a year, and post-COVID-19 sequelae of neurological complications, including direct and indirect effects on the central nervous system (CNS), have been recognized. There is a plethora of evidence for neurological, cognitive, and emotional deficits in COVID-19 patients. Acute neurological symptoms like neuroinflammation, cognitive impairment, loss of smell, and brain stroke are common direct effects among SARS-CoV-2 infected individuals. Work-associated stress, lockdowns, social distancing, and quarantine in response to contain SARS-CoV-2 have also affected the mental health of large populations, regardless of age. Public health emergencies have affected individuals and communities, resulting in emotional reactions and unhealthy behaviors. Although vaccines have been widely distributed and administered among large populations, vaccine hesitancy still exists and may be due to apprehension about vaccine efficacy, preliminary trials, and associated side effects. This review highlights the impact of COVID-19 on the CNS by outlining direct and indirect effects and factors contributing to the decline in people's mental health throughout the COVID-19 pandemic both during and after vaccine administration. Furthermore, we also discuss reasons for vaccine hesitancy and why some groups of people are deprived of vaccines. Finally, we touched upon the social determinants of mental health and their impact on disadvantaged populations during times of crisis which may help policymakers set up some action plans to mitigate the COVID-19 mental health turmoil during this ongoing pandemic.


Assuntos
COVID-19/psicologia , Recusa de Vacinação/psicologia , Vacinação/psicologia , Vacinas contra COVID-19/administração & dosagem , Controle de Doenças Transmissíveis , Humanos , Estudos Longitudinais , Saúde Mental/tendências , Pandemias/prevenção & controle , Saúde Pública , SARS-CoV-2/patogenicidade , Vacinação/tendências , Recusa de Vacinação/tendências , Vacinas
12.
World J Gastroenterol ; 27(29): 4763-4783, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1348715

RESUMO

The emergence and rapid spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 180 million confirmed cases resulting in over 4 million deaths worldwide with no clear end in sight for the coronavirus disease 19 (COVID-19) pandemic. Most SARS-CoV-2 exposed individuals experience mild to moderate symptoms, including fever, cough, fatigue, and loss of smell and taste. However, many individuals develop pneumonia, acute respiratory distress syndrome, septic shock, and multiorgan dysfunction. In addition to these primarily respiratory symptoms, SARS-CoV-2 can also infiltrate the central nervous system, which may damage the blood-brain barrier and the neuron's synapses. Resultant inflammation and neurodegeneration in the brain stem can further prevent efferent signaling to cranial nerves, leading to the loss of anti-inflammatory signaling and normal respiratory and gastrointestinal functions. Additionally, SARS-CoV-2 can infect enterocytes resulting in gut damage followed by microbial dysbiosis and translocation of bacteria and their byproducts across the damaged epithelial barrier. As a result, this exacerbates pro-inflammatory responses both locally and systemically, resulting in impaired clinical outcomes. Recent evidence has highlighted the complex interactions that mutually modulate respiratory, neurological, and gastrointestinal function. In this review, we discuss the ways SARS-CoV-2 potentially disrupts the gut-brain-lung axis. We further highlight targeting specific responses to SARS-CoV-2 for the development of novel, urgently needed therapeutic interventions. Finally, we propose a prospective related to the individuals from Low- and Middle-Income countries. Here, the underlying propensity for heightened gut damage/microbial translocation is likely to result in worse clinical outcomes during this COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Encéfalo , Humanos , Pulmão , Pandemias , Estudos Prospectivos
13.
AIDS Res Hum Retroviruses ; 37(4): 266-282, 2021 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1207218

RESUMO

The concurrence of infection with human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), presents an intriguing problem with many uncertainties underlying their pathogenesis. Despite over 96.2 million cases of COVID-19 worldwide as of January 22, 2021, reports of patients coinfected with HIV and SARS-CoV-2 are scarce. It remains unknown whether HIV patients are at a greater risk of infection from SARS-CoV-2, despite their immunocompromised status. We present a systematic review of the literature reporting cases of HIV and SARS-CoV-2 coinfection, and examine trends of clinical outcomes among coinfected patients. We systematically compiled 63 reports of HIV-1 and SARS-CoV-2 coinfection, published as of January 22, 2021. These studies were retrieved through targeted search terms applied to PubMed/Medline and manual search. Despite scattered evidence, reports indicate a favorable prognosis for HIV patients with strict adherence to combined antiretroviral therapy (cART). However, the presence of comorbidities was associated with a poorer prognosis in HIV/SARS-CoV-2 patients, despite cART and viral suppression. Studies were limited by geographic coverage, small sample size, lack of patient details, and short follow-up durations. Although some anti-HIV drugs have shown promising in vitro activity against SARS-CoV-2, there is no conclusive evidence of the clinical efficacy of any anti-HIV drug in the treatment of COVID-19. Further research is needed to explain the under-representation of severe COVID-19 cases among the HIV patient population and to explore the possible protective mechanisms of cART in this vulnerable population.


Assuntos
COVID-19/complicações , Infecções por HIV/complicações , Fármacos Anti-HIV/uso terapêutico , COVID-19/virologia , Infecções por HIV/tratamento farmacológico , Humanos , SARS-CoV-2/isolamento & purificação
14.
Transbound Emerg Dis ; 68(4): 1868-1885, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-894800

RESUMO

Emerging and re-emerging viral diseases can create devastating effects on human lives and may also lead to economic crises. The ongoing COVID-19 pandemic due to the novel coronavirus (nCoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, has caused a global public health emergency. To date, the molecular mechanism of transmission of SARS-CoV-2, its clinical manifestations and pathogenesis is not completely understood. The global scientific community has intensified its efforts in understanding the biology of SARS-CoV-2 for development of vaccines and therapeutic interventions to prevent the rapid spread of the virus and to control mortality and morbidity associated with COVID-19. To understand the pathophysiology of SARS-CoV-2, appropriate animal models that mimic the biology of human SARS-CoV-2 infection are urgently needed. In this review, we outline animal models that have been used to study previous human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV). Importantly, we discuss models that are appropriate for SARS-CoV-2 as well as the advantages and disadvantages of various available methods.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , COVID-19/veterinária , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio , Modelos Animais , Pandemias , SARS-CoV-2
16.
Front Public Health ; 8: 406, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-721485

RESUMO

A novel coronavirus (2019-nCoV) caused a global pandemic in the months following the first four cases reported in Wuhan, China, on December 29, 2019. The elderly, immunocompromised, and those with preexisting conditions-such as asthma, cardiovascular disease (CVD), hypertension, chronic kidney disease (CKD), or obesity-experience higher risk of becoming severely ill if infected with the virus. Systemic social inequality and discrepancies in socioeconomic status (SES) contribute to higher incidence of asthma, CVD, hypertension, CKD, and obesity in segments of the general population. Such preexisting conditions bring heightened risk of complications for individuals who contract the coronavirus disease (COVID-19) from the virus (2019-nCoV)-also known as "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2). In order to help vulnerable groups during times of a health emergency, focus must be placed at the root of the problem. Studying the social determinants of health (SDOH), and how they impact disadvantaged populations during times of crisis, will help governments to better manage health emergencies so that every individual has equal opportunity to staying healthy. This review summarizes the impact of social determinants of health (SDOH) during the COVID-19 pandemic.


Assuntos
COVID-19 , Pandemias , Idoso , China/epidemiologia , Humanos , SARS-CoV-2 , Determinantes Sociais da Saúde , Estados Unidos/epidemiologia
17.
J Mol Med (Berl) ; 98(10): 1369-1383, 2020 10.
Artigo em Inglês | MEDLINE | ID: covidwho-718390

RESUMO

Occasional zoonotic viral attacks on immunologically naive populations result in massive death tolls that are capable of threatening human survival. Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infectious agent that causes coronavirus disease (COVID-19), has spread from its epicenter in Wuhan China to all parts of the globe. Real-time mapping of new infections across the globe has revealed that variable transmission patterns and pathogenicity are associated with differences in SARS-CoV-2 lineages, clades, and strains. Thus, we reviewed how changes in the SARS-CoV-2 genome and its structural architecture affect viral replication, immune evasion, and transmission within different human populations. We also looked at which immune dominant regions of SARS-CoV-2 and other coronaviruses are recognized by Major Histocompatibility Complex (MHC)/Human Leukocyte Antigens (HLA) genes and how this could impact on subsequent disease pathogenesis. Efforts were also placed on understanding immunological changes that occur when exposed individuals either remain asymptomatic or fail to control the virus and later develop systemic complications. Published autopsy studies that reveal alterations in the lung immune microenvironment, morphological, and pathological changes are also explored within the context of the review. Understanding the true correlates of protection and determining how constant virus evolution impacts on host-pathogen interactions could help identify which populations are at high risk and later inform future vaccine and therapeutic interventions.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/epidemiologia , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/imunologia , Pneumonia Viral/epidemiologia , Replicação Viral/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , SARS-CoV-2
18.
Pathogens ; 9(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: covidwho-639698

RESUMO

In the absence of therapeutic interventions, and a possible vaccine candidate, the spread of COVID-19 disease and associated fatalities are on the rise. The high mutation frequency in the genomic material of these viruses supports their ability to adapt to new environments, resulting in an efficient alteration in tissue tropism and host range. Therefore, the coronavirus' health threats could be relevant for the long-term. The epidemiological data indicate that age, sex, and cardio-metabolic disease have a significant impact on the spread and severity of COVID-19. In this review, we highlight recent updates on the pathogenesis of SARS-CoV-2 among men and women, including children. We also discuss the role of the cellular receptors and coreceptors used by the virus to enter host cells on differential infection among men, women, and cardio-metabolic patients.

19.
J Neuroimmune Pharmacol ; 15(2): 167-173, 2020 06.
Artigo em Inglês | MEDLINE | ID: covidwho-343761

RESUMO

A number of neurological disease complications have been seen following infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While most person with COVID-19 respiratory disease demonstrate headache, nausea and vomiting, up to 40% present also experience dizziness, confusion, cerebrovascular disease, muscle pain, ataxia and seizures. Loss of taste and smell, defects in visual acuity and pain occur in parallel. Such central nervous system (CNS) signs and symptoms linked to laboratory-confirmed SARS-CoV-2 infection is often life threatening. Health care providers currently evaluating patients with neurologic symptoms need consider COVID-19 in any differential diagnosis. These considerations will facilitate prompt testing, isolation and prevention of viral transmission speeding best clinical outcomes. Graphical Abstract.


Assuntos
Infecções por Coronavirus/complicações , Doenças do Sistema Nervoso/virologia , Pneumonia Viral/complicações , Betacoronavirus , COVID-19 , Infecções por Coronavirus/fisiopatologia , Humanos , Doenças do Sistema Nervoso/fisiopatologia , Pandemias , Pneumonia Viral/fisiopatologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA